Fuzzy Classifiers Based on Kernel Discriminant Analysis

نویسندگان

  • Ryota Hosokawa
  • Shigeo Abe
چکیده

In this paper, we discuss fuzzy classifiers based on Kernel Discriminant Analysis (KDA) for two-class problems. In our method, first we employ KDA to the given training data and calculate the component that maximally separates two classes in the feature space. Then, in the one-dimensional space obtained by KDA, we generate fuzzy rules with one-dimensional membership functions and tune the slopes and bias terms based on the same training algorithm as that of linear SVMs. Through the computer experiments for two-class problems, we show that the performance of the proposed classifier is comparable to that of SVMs, and we can easily and visually analyze its behavior using the degrees of membership functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning membership functions of kernel fuzzy classifiers by maximizing margins

We propose two methods for tuning membership functions of a kernel fuzzy classifier based on the idea of SVM (support vector machine) training. We assume that in a kernel fuzzy classifier a fuzzy rule is defined for each class in the feature space. In the first method, we tune the slopes of the membership functions at the same time so that the margin between classes is maximized under the const...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

A Subspace Learning Based on a Rank Symmetric Relation for Fuzzy Kernel Discriminant Analysis

Classification of nonlinear high-dimensional data is usually not amenable to standard pattern recognition techniques because of an underlying nonlinear small sample size conditions. To address the problem, a novel kernel fuzzy dual discriminant analysis learning based on a rank symmetric relation is developed in this paper. First, dual subspaces with rank symmetric relation on the discriminant ...

متن کامل

Weighted Generalized Kernel Discriminant Analysis Using Fuzzy Memberships

Linear discriminant analysis (LDA) is a classical approach for dimensionality reduction. However, LDA has limitations in that one of the scatter matrices is required to be nonsingular and the nonlinearly clustered structure is not easily captured. In order to overcome these problems, in this paper, we present several generalizations of kernel fuzzy discriminant analysis (KFDA) which include KFD...

متن کامل

Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM Algorithm

In Proc. of IEEE Int’l Conf. on Computer Vision, Vancouver, Canada, 2001 It is often tedious and expensive to label large training data sets for learning-based object recognition systems. This problem could be alleviated by selfsupervised learning techniques, which take a hybrid of labeled and unlabeled training data to learn classifiers. Discriminant-EM (D-EM) proposed a framework for such tas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007